Papers
List of accepted papers
Paper ID
|
Title
|
Authors
|
02
|
Differential Property Prediction: A Machine Learning Approach to Experimental Design in Advanced Manufacturing
|
Loc Truong, WoongJo Choin, Colby Wight, Elizabeth Coda, Tegan Emerson, Keerti Kappagantula, Henry Kvinge
|
03
|
Anomaly Segmentation Network Using Self-Supervised Learning
|
Jouwon Song, Kyeongbo Kong, Ye-In Park, Seong-Gyun Kim, Suk-Ju Kang
|
04
|
Deep Reinforcement Learning for Engineering Design through Topology Optimization of Elementally Discretized Design Domains
|
Nathan Brown, Anthony Garland, Georges Fadel, Gang Li
|
05
|
An Intelligent System for Automatic Selection of DC-DC Converter Topology with Optimal Design
|
Song Wang, Yi Murphey, Wencong Su, Mengqi Wang, VAN HAI BUI, Fangyuan Chang, Can Huang, Lingxiao Xue, Felipe Leno da Silva, Ruben Glatt
|
06
|
Data-Efficient Training with Physics-Enhanced Deep Surrogates
|
Raphael Pestourie, Youssef Mroueh, Christopher Vincent Rackauckas, Payel Das, Steven Glenn Johnson
|
07
|
Quantile Autoencoder for Anomaly Detection
|
Hogeon Seo, Seunghyoung Ryu, Jiyeon Yim, Junghoon Seo, Yonggyun Yu
|
08
|
Parallel Attention Network using Vector with High Correlation with Label for Remaining Useful Life Estimation
|
Ye-In Park, Jouwon Song, Suk-Ju Kang
|
09
|
Automating the Process of Energy-Technology Invention
|
David E Tew, Mihaela Quirk, Lipi Acharya
|
10
|
Deep Symbolic Optimization for Electric Component Sizing in Fixed Topology Power Converters
|
Ruben Glatt, Felipe Leno da Silva, VAN HAI BUI, Can Huang, Lingxiao Xue, Mengqi Wang, Fangyuan Chang, Yi Murphey, Wencong Su
|
12
|
GANISP: a GAN-assisted Importance SPlitting Probability Estimator
|
Malik Hassanaly, Andrew Glaws, Ryan Nicholas King
|
13
|
Differentiable Design With Dynamic Programming
|
Kelly O. Marshall, Minsu Cho, Chinmay Hegde
|
14
|
AI-Driven Design-Space Exploration for Thermo-Fluid Domains
|
Amit Bhatia, Kathryn Kirsch, Claudio Pinello, Ram Ranjan
|
15
|
Grassmannian Shape Representations for Aerodynamic Applications
|
Olga Doronina, Zachary J. Grey, Andrew Glaws
|
16
|
Inverse Design of Microstructures via Generative Networks for Organic Solar Cells
|
Xian Yeow Lee, Aditya Balu, Balaji Sesha Sarath Pokuri, Adarsh Krishnamurthy, Soumik Sarkar, Baskar Ganapathysubramanian
|
17
|
An Epsilon-Frontier for Faster Optimization in Nonlinear Manifold Learning
|
Arthur Drake, Qiuyi Chen, Mark Fuge
|
18
|
Gaussian Process-Driven History Matching for Physical Layer Parameter Estimation in Optical Fiber Communication Networks
|
Josh William Nevin, Sam Nallaperuma, Seb Savory
|
19
|
Fast Unsupervised Generative Design for Structural Topology Optimization
|
Ethan Herron, Anushrut Jignasu, Jaydeep Rade, Xian Yeow Lee, Aditya Balu, Adarsh Krishnamurthy, Soumik Sarkar
|
20
|
Multi-Fidelity Modeling of Spatio-Temporal Fields
|
Sudeepta Mondal, Soumalya Sarkar
|
21
|
Deep Generative Models for Geometric Design Under Uncertainty
|
Wei Chen, Doksoo Lee, Wei Chen
|
22
|
Multigrid Distributed Deep CNNs for Structural Topology Optimization
|
Jaydeep Rade, Aditya Balu, Ethan Herron, Anushrut Jignasu, Sergio Botelho, Santi Adavani, Soumik Sarkar, Baskar Ganapathysubramanian, Adarsh Krishnamurthy
|
23
|
Physics Informed Machine Learning with Misspecified Priors: An analysis of Turning Operation in Lathe Machines
|
Zhiyuan Zhao, Xueying Ding, Gopaljee Atulya, Alex Davis, Aarti Singh
|
24
|
Composable and Reusable Neural Surrogates to Predict System Response of Causal Model Components
|
Ranjan Anantharaman, Anas Abdelrehim, Francesco Martinuzzi, Sharan Yalburgi, Elliot Saba, Keno Fischer, Glen Hertz, Pepijn de Vos, Chris Laughman, Yingbo Ma, Viral Shah, Alan Edelman, Chris Rackauckas
|
25
|
Accelerating Part-Scale Simulation in Liquid Metal Jet Additive Manufacturing via Operator Learning
|
Soren Taverniers, Svyatoslav Korneev, Kyle Mitchell Pietrzyk, Morad Behandish
|