09:00 - 09:10

Intro(10 mins)
Organizers

09:10 - 10:00

Plenary 1 (40 + 10 Q&A)
Nathan Kutz
University of Washington

10:00 - 10:20

Keynote 1 (15 + 5 Q&A)

10:20 - 11:00

Lightning Talks 1 (7*5 + 5 Q&A)
  • Paper #02 -- Differential Property Prediction: A Machine Learning Approach to Experimental Design in Advanced Manufacturing
  • Paper #03 -- Anomaly Segmentation Network Using Self-Supervised Learning
  • Paper #04 -- Deep Reinforcement Learning for Engineering Design through Topology Optimization of Elementally Discretized Design Domains
  • Paper #05 -- An Intelligent System for Automatic Selection of DC-DC Converter Topology with Optimal Design
  • Paper #06 -- Data-Efficient Training with Physics-Enhanced Deep Surrogates
  • Paper #07 -- Quantile Autoencoder for Anomaly Detection
  • Paper #08 -- Parallel Attention Network using Vector with High Correlation with Label for Remaining Useful Life Estimation
Contributed Speakers

11:00 - 11:20

Keynote 2 (15 + 5 Q&A)
Adarsh Krishnamurthy
Iowa State University

11:20 - 12:00

Lightning Talks 2 (7*5 + 5 Q&A)
  • Paper #09 -- Automating the Process of Energy-Technology Invention
  • Paper #10 -- Deep Symbolic Optimization for Electric Component Sizing in Fixed Topology Power Converters
  • Paper #12 -- GANISP: a GAN-assisted Importance SPlitting Probability Estimator
  • Paper #13 -- Differentiable Design With Dynamic Programming
  • Paper #14 -- AI-Driven Design-Space Exploration for Thermo-Fluid Domains
  • Paper #15 -- Grassmannian Shape Representations for Aerodynamic Applications
  • Invited ightning talk: Hardware Acceleration of Message-Passing Networks for Quantum Chemistry
Contributed Speakers

12:00 - 13:30

Lunch break + posters (1 hr 30 mins)
Contributed Speakers

13:30 - 14:20

Plenary 2 (40 + 10 Q&A)
Elizabeth A Holm
Carnegie Melon University

14:20 - 15:00

Lightning Talks 3 (7*5 + 5 Q&A)
  • Paper #16 -- Inverse Design of Microstructures via Generative Networks for Organic Solar Cells
  • Paper #17 -- An Epsilon-Frontier for Faster Optimization in Nonlinear Manifold Learning
  • Paper #18 -- Gaussian Process-Driven History Matching for Physical Layer Parameter Estimation in Optical Fiber Communication Networks
  • Paper #19 -- Fast Unsupervised Generative Design for Structural Topology Optimization
  • Paper #20 -- Multi-Fidelity Modeling of Spatio-Temporal Fields
  • Paper #21 -- Deep Generative Models for Geometric Design Under Uncertainty
  • Paper #22 -- Multigrid Distributed Deep CNNs for Structural Topology Optimization
Contributed Speakers

15:00 - 15:20

Keynote 3 (15 + 5 Q&A)
Benji Maruyama
Air Force Research Laboratory

15:20 - 15:40

Lightning Talks 4 (3*5 + 5 Q&A)
  • Paper #23 -- Physics Informed Machine Learning with Misspecified Priors: An analysis of Turning Operation in Lathe Machines
  • Paper #24 -- Composable and Reusable Neural Surrogates to Predict System Response of Causal Model Components
  • Paper #25 -- Accelerating Part-Scale Simulation in Liquid Metal Jet Additive Manufacturing via Operator Learning
Contributed Speakers

15:40 - 16:00

Keynote 4 (15 + 5 Q&A)
Brian Giera
Lawrence Livermore National Laboratory

16:00 - 16:45

Panel discussion (45)
Panelists
  • David Tew
  • Venkat Vishwanathan
  • Michael Salpukas
  • Mark Fuge
  • Olga Wodo
Panelists

16:45 - 17:00

Closing (15)
Organizers